nth Term Test (also called Divergence Test)

If $\lim_{n\to\infty} a_n$ does not exist or $\lim_{n\to\infty} a_n \neq 0$ then $\sum_{n=k}^{\infty} a_n$ DIVERGES. This test can never prove a series converges, the test is inconclusive if $\lim_{n\to\infty} a_n = 0$

Direct Comparison Test (also called Comparison Test)

For the positive series $\sum_{n=k}^{\infty} a_n$ and $\sum_{n=k}^{\infty} b_n$ and arbitrary constant NIf $\sum_{n=k}^{\infty} b_n$ converges and $a_n < b_n$ for all n > N then $\sum_{n=k}^{\infty} a_n$ also CONVERGES. (If a series is smaller than some finite number it is also some finite number.) If $\sum_{n=k}^{\infty} b_n$ diverges and $a_n > b_n$ for all n > N then $\sum_{n=k}^{\infty} a_n$ also DIVERGES. (If a series is bigger than infinity it is also infinity.)

Limit Comparison Test

For the positive series $\sum_{n=k}^{\infty} a_n$ and $\sum_{n=k}^{\infty} b_n$ If $\lim_{n \to \infty} \left(\frac{a_n}{b_n}\right) = c > 0$ then $\sum_{n=k}^{\infty} (a_n)$ and $\sum_{n=k}^{\infty} b_n$ either BOTH CONVERGE or BOTH DIVERGE. If $\lim_{n \to \infty} \left(\frac{a_n}{b_n}\right) = 0$ and $\sum_{n=k}^{\infty} (b_n)$ converges then $\sum_{n=k}^{\infty} a_n$ also CONVERGES. If $\lim_{n \to \infty} \left(\frac{a_n}{b_n}\right) = \infty$ and $\sum_{n=k}^{\infty} (b_n)$ diverges then $\sum_{n=k}^{\infty} a_n$ also DIVERGES.

Integral Test

For the positive series $\sum_{n=k}^{\infty} a_n$ with $a_n = f(n)$ where f(n) is a continuous, positive, decreasing function of x for all x > N. Then $\sum_{n=k}^{\infty} a_n$ and $\int_k^{\infty} f(n) dn$ either BOTH CONVERGE or BOTH DIVERGE.

Ratio Test

For the positive series $\sum_{n=k}^{\infty} a_n$

Let $\rho = \lim_{n \to \infty} a_{n+1} \div a_n$

If $\rho > 1$ then the series DIVERGES. If $\rho < 1$ then the series CONVERGES. If $\rho < 1$ then the ratio test is inconclusive.

Root Test

For the series $\sum_{n=k}^{\infty} a_n$ where all a_n are positive:

Let
$$\rho = \lim_{n \to \infty} \sqrt[n]{a_n}$$

If $\rho > 1$ then the series DIVERGES. If $\rho < 1$ then the series CONVERGES. If $\rho < 1$ then the root test is inconclusive.

Alternating Series Test

The series $\sum_{n=k}^{\infty} a_n$ converges if the following 3 conditions are met:

(1) The terms alternate perfectly (a positive after each negative, a negative after each positive).

- (2) $|a_{n+1}| < |a_n|$ for all n > N for some integer N.
- (3) $\lim_{n \to \infty} a_n = 0$

Common Series

These are useful for the direct comparison test and limit comparison test.

$$\sum_{n=k}^{\infty} \frac{1}{n}$$
DIVERGES
$$\sum_{n=k}^{\infty} \frac{1}{n^2}$$
CONVERGES
$$\sum_{n=k}^{\infty} \left(\frac{1}{n}\right)^p$$
CONVERGES if $p > 1$ and DIVERGES if $p \le 1$
$$\sum_{n=k}^{\infty} \left(\frac{1}{2}\right)^n$$
CONVERGES
$$\sum_{n=k}^{\infty} ar^n$$
CONVERGES if $|r| < 1$ and DIVERGES if $|r| > 1$

www. Ree Tutors Math.org